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Abstract 

The nature of the orbital structure of the pairs in the superconducting phase of the high-temperature super- 
conducting cuprates remains one of the central questions in this field. Here we examine the possibility that the 
superconducting state of these materials is characterized by d,z_yz pairing. We begin by looking theoretically 
at why this type of pairing might be favored in a strongly correlated system with a short-range Coulomb 
interaction. Then we turn to the experimental question of how one would know if d,z_yz pairing were present. 
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1. Introduction 

It has been eight years since Bednorz and Muller’s paper [ I] on “Possible High T, Superconduc- 
tivity in the Ba-La-Cu-0 System” was published. During this time the transition temperature of the 
cuprate superconductors has risen [ 21 to 134 K in HgBa2Ca2Cu40s+s, and there have been many 
experimental and theoretical studies of the remarkable properties of this class of materials [3-51. 
At the present, there remain widely divergent views regarding the nature of both the normal and the 
superconducting states as well as the origin of the pairing mechanism [ 61. Here we will take the view 
that spin-fluctuations play a central role in determining the physical properties of the cuprates and 
within this framework examine the case for d,z_?,? pairing. Specifically, we will discuss two questions 
about the possibility of d+_,,? pairing: (1) Why might it happen? and (2) How would we know? 

Before beginning, we note that the basic structure of the cuprates consists of Cu02 sheets as 
shown for La2_,SrXCu04 in Fig. 1. In the undoped x = 0 state, the CU+~ ions are in a nominal 
(3d) 9 configuration and have a magnetic moment. Below a Neel temperature, as shown in the phase 
diagram [7] of Fig. 2, the undoped system is an insulating antiferromagnet with a charge transfer 
gap [8]. When Sr replaces some of the La, additional holes are added to the Cu02 layer. As the 
system is doped with holes, the antiferromagnetic order is suppressed, and the system eventually 
becomes metallic and superconducting. The phase diagram of Fig. 2 also indicates that besides the 
insulating-metal crossover, there is a spin-glass-like region and an orthorhombic to tetragonal lattice 
transition. 

With such a rich phase diagram, one can understand that there would be a variety of proposed 
pairing mechanisms and superconducting states. These include electron-phonon [ 91 or charge-transfer 
models [lo] in which the orbital pairing state has s-wave or anisotropic S-wave symmetry, models 

La, Sr 

0.1 0.2 0.3 

Sr concentration , x 

Fig. 1. The structure of LazCuO4. The CuOz sheets are believed to be the active region for pairing when additional holes 
are added by replacing some of the La with Sr (from Almasan and Maple [ 1701). 

Fig. 2. Phase diagram of La2_,Sr,Cu04 (from Keimer et al. [7] ). The superconducting phase boundary for x > 0.2 
remains under discussion [ 169,168]. 
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Fig. 3. Knight shift K versus reduced temperature for Cu (Barrett et al. [ 161) and 0 (Takigawa et al. [ 171). The dashed 
curve shows the result of a calculation based upon a dx2_y2 gap (Bulut et al. [75]), which is described in Section 3. 

Fig. 4. The inset shows (A(O)/A(T))* versus T for nominally pure Yfki2CU306.9~. The main figure shows the same data 
but plotted as (A(O)/A(T))’ versus T. The value of A(0) was taken to be 14008, (from [18]). 

based upon the antiferromagnetic nature of the undoped system which involve d,~_~2 pairing or 
possible s + id,z_?,z pairing (see Appendix A), or alternatively, strongly correlated semion gauge 
models with &__~2 + id,,. pairing [ 11,121. There has also been the suggestion that the driving term 
responsible for pairing is the interlayer hopping [ 131 which is predicted to give rise to anisotropic 
s-wave pairing [ 141. Finally, various triplet pairing schemes have also been discussed, [ 151 but 
as shown in Fig. 3, Knight shift [ 16,171 data imply that the pairs are singlet. In addition, recent 
measurements of the penetration depth, [ 181 plotted in Fig. 4, show that near T, the superfluid density 
varies as 

with an index I/ = 0.66, which is consistent with three-dimensional XY universality l . Thus it would 
appear that we should be looking for singlet pairing in a one-dimensional representation. 

In classifying the possible symmetry representations for the gap, we will frame the discussion in 
terms of the idealized case of a tetragonal lattice. As is known, the cuprate superconductors have a 
slight orthorhombic distortion, and, following the discussion of the tetragonal lattice, we will comment 
on the orthorhombic case. The five even parity irreducible representations [ 20,211 for a tetragonal 
lattice with D4h symmetry are listed in Table 1, along with some representative basis gap functions. 
Four of these representations are one-dimensional. Some of the basis functions correspond to gap 

’ The possibility of observing critical behavior for the high-temperature superconductors is associated with their relatively 
short low-temperature coherence length. The fact that 3D behavior is observed near T, is due to the divergence of 51 linking 
the planes as T, is approached. Specific heat measurements suggesting critical scaling consistent with 3DXY universality 
have been reported by G. Mozurkewich et al. [ 191. 
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Table 1 
Even parity irreducible representations of D4h along with examples of basis functions for Ak. 

Irreducible representation Basis functions for dk 

1, cos kI + cos ky 
sin k, sin kY (cos k, - cos kY) 

(coskx - cos&) 
sin k, sin kY 
sin k, sin kL, sin kv sink, 

functions which have been discussed as potential candidates for the high-ir, cuprates. The extended 
s-wave 

A,*(k) =A~(COSkx+COSk~), 

is a basis state of r:, and the d-waves 

*+ _ .2 
(k) = A,,(cosk, -cask,) 

and 

AdAy (k) = A0 sin k, sin k, (4) 

are from r,+ and r4+, respectively. Figs. 5(a)-(c) give schematic plots of several different gap 
functions A(k) shown as solid lines relative to the shaded Fermi surface of a doped near-neighbor 
tight-binding band. 

On a simple square lattice, the pair fields corresponding to the gap functions, Eqs. (2)-(4), are 
made up from different linear combinations of lacal singlet pairs. For example, the dX2_Yz-wave pair 
field operator 

with CL, the creation operator for an electron of momentum k and spin S, can be expanded in terms 
of the site operators ct to give 

(6) 

The lattice coordinate representation on the right corresponds to a d+B~ linear combination of singlets 
between the I” lattice site and its four near neighbors.2 

Now in fact the point group of the cuprates, in the temperature and doping regime of interest, 
is orthorhombic &. In this lower symmetry structure, the reflections x = fy and the 90” rotation 
about the z-axis are removed, leaving the ~f~2_~2 gap invariant under the allowed symmetry operations 
of DZh. Thus in D2,*, the dx2_)2 gap also belongs to the f F representation, and on purely symmetry 

2 In Appendix B we provide some further background regarding what is meant by “d,2_y2 pairing.” 
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Fig. 5. Schematic plots of (a) an extended s-wave gap, (b) an anisotropic s-wave gap, (c) a 4~~2 gap, and (d) an 
extended $*-wave gap for a Fermi surFace of a system with a second near-neighbor hopping t’. The boundary of the shaded 

region is the normal state Fermi surface and the size of the gap Ak at the momentum k on the Fermi surface is indicated 
by the solid curve surrounding the Fermi surface. The gap in (a) and (b) has the same phase for all k, while the dX2_,,z 
gap shown in (c) and the extended $*-wave gap shown for the t’ altered Fermi surface in (d) change sign as indicated. 

grounds no distinction can be made between it and the extended or generalized s*-wave. A rj+ gap 
would in general contain a mixture of the allowed basis functions, aIthough for a nearly tetragonal 
system one would expect the combinations to be dominantly s*- or d,2_,2-like. Thus the following 
discussion is based upon the tetragonal classification, and, furthermore, we will often simply use one 
of the basis states given above and shown in Fig. 5 to characterize the gap. As shown in Fig. 5(d), 
one final caution to keep in mind is that when a second-nearest-neighbor hopping t’ is included, a 
generalized s-wave gap can have eight (or a multiple of eight) nodes on the Fermi surface [ 211, 
so one must be careful about drawing conclusions regarding the symmetry of the gap based simply 
upon the presence of nodes. 

2. Why might it happen? 

In addressing the first question regarding why L&L_~Z pairing might occur, we will look for the 
pairing mechanism in a model of a single CuOz layer and neglect the interlayer hopping. Our view is 
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Fig. 6. Schematic of the CuOz plane and the one-electron dxz_Yz Cu orbitals and the p. 0 orbitals that give rise to the 
band in which the pairs form. 

that the interlayer hopping provides a weak coupling between the layers leading to a three-dimensional 
superconducting state but that the basic pairing mechanism resides in the CuOz plane. Fig. 6 contains 
a schematic of a Cu02 plane and the one-electron &z__., 2 Cu orbitals and pa 0 orbitals which have 
been used as the basis for various three-band extended Hubbard models [22] of the CuOZ layer. An 
additional “folding-down” of this basis [ 23-261 leads to the one-band Hubbard model [27] which 
we will discuss. In this case, the system is simplified to nominal “Cu-sites” connected by an effective 
one-electron transfer t and having an onsite repulsion U which acts if two electrons occupy the same 
site, 

H = - c t(&js + C,J&i,) + c U&*&l* 
(ij)s i 

Here cf creates an electron of spin s on site i and nis is the number operator citsci,r. There are, in 
principle, next-near-neighbor one-electron hopping terms which provide a more realistic model of the 
band structure and Fermi surface, but we will neglect them for our present discussion and take the 
(ij) sum in Eq. (7) over near neighbors. It is important to also recognize that in going from the 
three-band model for the CuOz sheet shown in Fig. 6 to the one-band model described by Eq. (7)) 
we are ignoring the fact that the cuprates are charge transfer insulators [8] as well as the possibility 
that charge-transfer fluctuations may provide a pairing mechanism [lo]. In defense of the one-band 
Hubbard model, Monte Carlo simulations of the three-band Hubbard model [28,29] near a band 
filling of one hole exhibit many of the same features as those found in sumulations of the one-band 
case near half-filling. 

Within the Hubbard model framework there have been a variety of calculations which suggest 
that when the system is doped slightly away from half-filling, the on-site Coulomb interaction can 
give rise to superconductivity. These studies have varied from weak-coupling perturbation theory to 
strong-coupling variational calculations. They include exact diagonalization studies of small clusters 
and Monte Carlo simulations of larger clusters. They range from conserving approximations to 
phenomenological treatments. What is remarkable is the almost universal conclusion that if the two- 
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Fig. 7. Monte Carlo results for the spin-spin correlation function c(l) = ( m j+, i m.) versus position, with 2 moving along the 
path shown in the inset, for a 10 x 10 lattice at half-filling (n) = 1. Here U = 4t and the temperature T = 0.11. 

dimensional Hubbard model (or various t-J as well as related phenomenological models based upon 
the interaction of quasi-particles with antiferromagnetic spin-fluctuations) becomes superconducting 
when it is doped near half-filling, it will go into a dX2_ ye state. In Appendix A we give a short 

summary of the various approaches [ 301. Here we proceed with a discussion based upon intuition 
developed from Monte Carlo simulations and diagrammatic calculations. 

In the half-filled state in which (nit + nil) = 1, quantum Monte Carlo simulations show that the 

ground state of Eq. (7) has antiferromagnetic long-range order [ 31,321. Physically, at half-filling 
when U is large, each site typically has one electron. If the spins on neighboring sites are oppositely 
oriented, then they can virtually hop over and back, lowering the energy of the system by a term 
proportional to -t’/l_J. This is the strong-coupling result for the exchange interaction J = 4 tz/U that 
gives rise to the antiferromagnetic correlations illustrated in Fig. 7. Here Monte Carlo results [32] 
for the spin-spin correlation function 

with rnf = njT - nil, are shown for a 10 x 10 periodic lattice at a temperature T = 0.1 t with U/t = 4. 

At this temperature, the antiferromagnetic correlation length is larger than the lattice dimension used 
in this simulation. Finite-size scaling calculations using this type of Monte Carlo data have shown 
that the (n) = 1 ground state has long-range antiferromagnetic order [ 3 1,321. 

When the system is doped with holes so that, for example, (n) = 0.87, the long-range antiferro- 
magnetic order disappears, but the wave vector dependent magnetic susceptibility remains peaked at 
large momentum transfers. In Fig. 8, we show Monte Carlo results for the wave vector dependent 
susceptibility [ 321 

P 

X(4) = $ Cjd7(m~+j(7)mf(0)) eiq.’ 

’ 0 

(9) 
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Fig. 8. Monte Carlo results for ,y( q) versus q along the ( 1, 1) axis for various temperatures. Here U = 4t and the filling 
(n) = 0.87. 

at various temperatures. As the system is cooled, we see that x(q) develops short-range antiferro- 
magnetic correlations. At still lower temperatures, on larger lattices the peak at (v, rr) splits, [33] 
giving rise to incommensurate peaks at (V - S, 7~) and (v, r - S) . 

It turns out that for intermediate coupling, the simple RPA form 

x(4) = 
x0 (4) 

1 - ~x()(q)’ (10) 

with a parameterized (reduced) interaction U, provides a useful approximation for x [ 34,351. Here 

x&l> = ;c fbp-tq) - f(qJ 

P 
w - (&p+y - p E ) +iS’ (11) 

with cl, = -2 t(cosp, + cosp!) - ,x and f the usual Fermi function. The RPA diagrams for the 
longitudinal xz, and transverse x+_ susceptibilities are shown in Fig. 9(a). 

Near half-filling the nearly antiferromagnetic fluctuations which give rise to x(q) are the dominant 
collective excitations, so that it is natural to examine the effective electron-electron interaction me- 
diated by their exchange. Perturbation theory graphs for the exchange of longitudinal and transverse 
spin fluctuations are shown in Fig. 9(b). Comparing the graphs in Figs. 9(a) and 9(b) illustrates 
the nature of this process which gives rise to an effective electron-electron interaction introduced by 
Berk and Schrieffer [36], 

v _ u2x()(p’+ P) + u3x;(P’- PI 

&- 1 -Ux,(p’+p) 1 - u2/@p - p) . 
(12) 

At large momentum transfer where Ux, is near 1, Eq. ( 12) has the simple form (since p can go to 
-p for an even parity gap) 

Kff- $J2x(p’-p), (13) 

with x given by Eq. (10). Thus in this approximation V,, has the same momentum dependence as 
x shown in Fig. 8. 
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Fig. 9. (a) RPA diagrams for the longitudinal ,y._: and transverse ,y+_ spin susceptibilities. (b) Diagrams for the effective 

interaction consisting of the exchange of longitudinal and transverse spin-fluctuations. 

Cc) Cd) (e) 

ad 
+-T+T+-=+-T-+t 

Fig. 10. The irreducible particle-particle interaction r, and diagrammatic contributions through third-order. 

More generally, we would like to know the momentum and energy (Matsubara frequency) depen- 
dence of the irreducible particle-particle interaction r, shown in Fig. 10. Diagrams for r,, through 
third-order are also shown in Fig. 10. The RPA approximation, Eq. (12), includes the contributions 
from Figs. 10(a), (b), (e), and (h) and sums the set of graphs shown in Fig. 9(b) to all orders. 
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Fig. 11. The irreducible singlet particle-particle interaction Gs (4, w,,, = 0) versus q along the ( 1, 1) direction for (n) = 0.87, 

U = 4t, and T = 0.251. The solid points are Monte Carlo data and the open circles are third-order perturbation theory results. 

However, in the absence of a small parameter, the cross-graphs (c) and (d) as well as the vertex 
corrections (f) and (g) may not be negligible, and Eq. ( 12) is an uncontrolled approximation. Now, 
it is possible to use Monte Carlo simulations to calculate the complete irreducible particle-particle 
interaction r,, and this has been done [37] on an 8 x 8 lattice with U/t = 4, (n) = 0.875, at a 
temperature T = 0.25t. The results, which were obtained for the singlet channel with 4 along the 
q1 = qY axis, are plotted in Fig. 11 as the solid points. The open circles represent the third-order 
perturbation theory calculation for comparison. Just as found from the RPA interaction, the irreducible 
particle-particle interaction in the singlet channel, rls increases at large momentum transfers. Note 
that while the bare interaction U = 4 t, Tls becomes greater than 20t for q = (TT, T), even at the 
relatively high temperature T = 0.25t, at which this simulation was run. 

Now, at this stage, let us pause in order to understand the nature of the attractive interaction 
represented by rls. The effective interaction plotted in Fig. 11 is positive. Can such an interaction 
cause pairing? The answer is yes, but to get a physical feeling for how this occurs, it is useful to 
look at the interaction in real space, 

r,,(z) = i C e+r,,, (4) 

The real space Fourier transform of the Monte Carlo results for rls are plotted in Fig. 12. Here one 
sees that if two electrons are on the same site, r,,Y(l) is large and repulsive. However, if they are 
on near-neighbor sites, r,,s( I) is attractive. Viewed in this way, the interaction appears as a giant 
Friedel oscillation, and if the two electrons can spatially arrange themselves to take advantage of the 
attractive regions of the interaction, it is possible that they can pair. In fact, Monte Carlo calculations 
of the Bethe-Salpeter equations [38] show that the interaction Trs is attractive in the d,,?_!: pairing 
channel. To understand this, consider the BCS gap equation 

( 14) 

A,, = - c v,,,, f & , (15) 
II’ I’( 

with p and p’ near the Fermi surface shown in Fig. 5(b). If Vr,pj = Tls(p - p) is positive with its 
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-0.12 +0.43 -0.50 +0.43 -0.12 
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+0.01 -0.12 +0.12 -0.12 +0.01 

Fig. 12. Real space Fourier transform of the irreducible singlet vertex r,,( I, o,~ = 0) versus the separation I between the 
pairs. 

greatest strength at large momentum transfer, then from Eq. (15) it follows that A,, must change 
sign on the Fermi surface as illustrated in Fig. 5(c) . Self-consistent conserving calculations [ 39,401 
based on the spin-fluctuation exchange diagrams which include the full momentum and Matsubara 
frequency dependence give a low-temperature gap in close agreement with the simple L~~L_~z form 
A,,( cos px - cos pJ . 

It is interesting to contrast this interaction with the effective interaction for a weak-coupling low- 

temperature superconductor. In this case, 

(16) 

with the first term arising from the phonon exchange and the second term the screened Coulomb 
interaction. Even when the polarization sum and Umklapp processes are included, the screened 
Coulomb term severely reduces V,, and can even make it positive. However, if we examine the 
interaction Eq. ( 16) in time, we find that 

Re (Veff(t)) = Re 
.i 

dw 
G e-‘“’ (V,,(iw,, -+ w + is)) 

= - ((gJ2 sinw,t) + (17) 

Here the brackets denote an average of the momentum transfer q over the Fermi surface. The point is 
that the Coulomb interaction acts only over a short time, here represented by a broadened &function 
and set by the inverse bandwidth (or the plasma frequency, if it is smaller than the bandwidth), 
while the attractive electron-phonon interaction is retarded by the slower lattice response. Thus if the 
electrons making up the pair correlate themselves in time to avoid the short-time Coulomb repulsion, 
they can then take advantage of the attractive electron-phonon mediated interaction. This behavior 
is seen in the frequency dependence of the gap found by solving the Eliashberg equations [ 411. 
Red(o) increases as the typical phonon energy w. is approached, goes negative when w exceeds o. 
and the lattice response is out of phase with the drive, and then remains negative out to large values 
of w. This latter feature simply reflects the fact that the electrons making up the pair avoid short-time 
close-range encounters. It means that 
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(18) 

or that in practice (4re2/ ( q2 + K:)) can be replaced over the frequency interval d to several times 
the Debye energy by a weak pseudo-potential [42]. Now an analogous thing happens for dX~_y~ 
pairing in the Hubbard model. That is, the two pairing electrons avoid the Coulomb interaction by 
arranging themselves in space in a dX2-! 2 orbit. In this case the gap changes sign in momentum space, 
d, = &(cospx - cosp,), and 

c un,=o 
1’ 

2E,> * 
(19) 

This same effect is clearly seen in Fig. 12 where the repulsive interactions associated with the 45” 
and 135” lattice sites are avoided by the nodes of a d+?,z gap. 

These ideas have basically been weak coupling arguments. There are also a variety of strong 
coupling pictures which have been developed. These often start from the t-J model (formally, the 
large U limit of the Hubbard model) discussed in Appendix A. In this model, there is a Heisenberg 
antiferromagnetic coupling J between spins on adjacent sites and holes move via a hopping t. A 
generalization beyond the Hubbard model treats t and J as independent parameters. Perhaps the 
simplest strong coupling pairing picture to visualize is the notion that two holes will seek to occupy 
adjacent sites in order to break seven exchange bonds rather than eight. Unfortunately, this is too 
classical a view, and by the time it can occur, one is likely to be in the phase separation [43] region 
of the t-J model. Exact diagonalization calculations, which indicate that a dxz_pz bound state of two 
holes can form, [44] find that the two bound holes are typically separated by more than one site at 
weaker (physical) values of J/t. Here the physical picture may be closer to the kinetic energy based 
idea that two correlated holes can move more freely through the locally antiferromagnetic lattice with 
one unzipping the ferromagnetic string created by the motion of the other. It appears that there is 
a continuous crossover between the weak-coupling and strong-coupling pictures and that both favor 
d,z_y2 pairing. 

Given this, an important question remains: is the Coulomb induced quasi-particle spin-fluctuation 
interaction the dominant coupling in the cuprates relative to the electron-phonon and charge-transfer 
fluctuation interactions? One answer to this is given by transport calculations which show that the size 
and over-all temperature dependence of the normal state resistivity can be adequately described by 
a spin-fluctuation exchange model [45,46]. Of particular interest is the fact that these same models 
also provide an explanation of the NMR (NQR) relaxation rates [ 47-5 11. Further support for this is 
provided by experiments on YBCO which clearly show that changes in the spin-fluctuation spectrum 
observed in NMR experiments are accompanied by changes in the normal state resistivity and the 
Hall coefficient. The in-plane resistivity pah( T) and the Hall coefficient RH (T) of YBa2Cu307_,, have 
been measured for various oxygen concentrations [ 521. In the oxygen-depleted materials, bab( T) 
deviates from a linear T dependence and R,(T) deviates from T-’ below a temperature T*. This 
deviation was found to coincide with the opening of a spin gap at T* as seen in NMR [ 171 and 
neutron scattering experiments [ 531. Similar behavior was observed in the two-chain YBa2CudOs 
compound [54,55], which is stoichiometric and untwinned with the chains running along the b-axis. 
For YBazCuq08, the resistivity measured along the a-axis probes the charge transport associated 
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with the Cu02 planes. Just as for the YBa2Cu307_y, the temperature deviates from the linear T 

dependence below a T* N 200 K, where from NMR measurements of Zimmermann et al. [56] there 
is evidence for the opening of a spin gap. There is a clear correlation between p,/T, the Cu( 2) Knight 
shift, and (TIT) -’ versus T. A plausible explanation for the correlation between these quantities in 
both YBa2Cu307-y and YBa2Cu408 is that the transport in the normal state of the Cu02 planes is 
dominated by spin-fluctuation scattering and that the opening of a spin gap leads to a reduction in 
this scattering [ 5.51. In addition, the rapid drop in the quasi-particle inelastic scattering rate for T < T, 

observed m YBa$u306.9s by Bonn et al. [57 ] is similar to the decrease in the nuclear relaxation 
rate. Calculations of the quasi-particle lifetime due to spin-fluctuation scattering [58] leads to results 
in good agreement with the experimental observations. 

So to summarize the discussion of why d,~~? pairing might occur: 
- 1. The observed correlation of resistivity, optical and microwave conductivity data with NMR and 

neutron scattering results are consistent with the notion that the dominant quasi-particle scattering 
mechanism in the cuprates involves spin-fluctuations. The Hubbard model as well as the t-J model 
provides a description of these spin-fluctuation processes. 

- 2. Diagrammatic as well as Monte Carlo calculations for the Hubbard model find that near half- 
filling, spin-fluctuation exchange leads to an effective electron-electron interaction which is attrac- 
tive in the singlet d_,z_+ channel. The d,z_,.z-wave pairs avoid the on-site Coulomb repulsion. In 
addition, a variety of different numerical, diagrammatic, and phenomenological calculations re- 
viewed in Appendix A find that for the t-J model as well as the Hubbard model, there is an 
attractive interaction in the singlet d12_?2 channel. 

Having said this, it is important to keep in mind Feynman’s warning, [59] “The first principle is that 
you must not fool yourself-and you are the easiest person to fool.” There are a number of questions 

which can be raised regarding the dx?-y?-wave scenario we have discussed. 
- 1. Is the Hubbard model really the right starting point? Neutron scattering experiments on YBa$u- 

07-6 with 6 near zero (optimal doping) have so far failed to exhibit strong antiferromagnetic 
fluctuations [ 601. Perhaps the correlation between changes in the transport properties and the 
magnetic properties simply reflect a common underlying feature associated with a quite different 
mechanism involving, for example, charge-transfer [ IO] or incipient-phase separation [ 431. Are 
we being fooled by our apparent ability to fit some of the transport data using spin-fluctuation 
approximations? 

- 2. The diagrammatic calculations only sum selected graphs and there is no small parameter. Monte 
Carlo simulations of the Hubbard model have failed to find evidence for the spatial growth of 
pair-field correlations [61,62] or evidence for a finite superfluid density at the temperatures and 
lattice sizes that have been studied [ 63,641. Furthermore, the zero-temperature exact diagonalization 
calculations for the Hubbard model have only been carried out on small (4 x 4) lattices [65]. 
While extrapolated results have been obtained for two holes in a t-J model, these calculations 
neglect the three-site t2/U terms, and it is not known what happens on large lattices at a fixed 
density of holes [ 661. 

Thus it is of great interest to understand how we would know from experiment whether the gap has 
d+_?? symmetry. While the existence of a dlz_y2 gap would not uniquely imply that the antiferro- 
magnetic spin-fluctuation mechanism is responsible for pairing in the cuprates, it would certainly be 
consistent with what is expected from such an interaction. Furthermore, if the gap is not close to the 
dXz_,.2 form it would provide a strong incentive to look for alternative pairing mechanisms. 
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3. How would we know? 

Shortly after the discovery of the high-ir, cuprates, Shapiro steps [67] at voltage increments 
hf/2 e were seen in weak links irradiated by microwaves of frequency f, and flux quantization in 
units of hc/2 e was observed in flux lattice studies [68] showing that the superconducting order 
parameter involved pairs of electrons. Furthermore, Knight shift measurements [ 16,171, Fig. 3, below 
T, provided evidence that the electron pairs were in a singlet state, and the critical behavior [ 181 of 
n,, Fig. 4, implies that we are looking for a non-degenerate orbital state3 . Thus, as discussed in the 
introduction, the remaining question involves the symmetry of the orbital state. 

Quasi-particle properties. The low-temperature dependence of various thermodynamic and transport 
properties depends upon the quasi-particle density of states N(w) . If the gap has nodes (line nodes in 
3D), then N(w) at low energies for the pure system varies linearly with w and the low-temperature 
quasi-particle properties vary as power laws. Alternatively, if the magnitude of the gap does not 
vanish, the low-temperature density of quasi-particles and their contribution to transport properties 
decreases exponentially. Here we review some examples of quasi-particle properties which show 
power-law behavior consistent with a dX?_-!,2 gap. In addition, we will examine how impurities alter 

this behavior. 
In the usual BCS theory, the penetration depth is given by 

co 

=I-2p dw- 
s 

N(w) 
NO f(@)(l -f(w)>, 

0 

with N(w) the quasi-particle density of states normalized to the 
states No. Here, for a constant s-wave gap, 

N(w)/& = Re[w/(w2 - L@“2], 

while for a gap with a node, such as a d+!,z gap, at an energy 

maximum (anti-node) value of the gap do, 

N(w) ‘y w -_- 
NO Ao 

(20) 

normal state single-spin density of 

(21) 

o which is small compared to the 

(22) 

For an s-wave gap, the number of quasi-particles is exponentially small at low temperatures, and Eq. 
(20) gives the well known s-wave BCS result 

(23) 

However, for a clean dxz_J2 material with a density of states given by Eq. (22), one finds from Eq. 
(20) that 

’ In particular, the smooth temperature dependence of A(T) is supportive of a single phase transition, ruling out scenarios in 
which the system initially condenses into a d,2 _?z phase and subsequently makes a second phase transition into a d,z_y2 + is 
or dx+? + t&y phase. 
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Fig. 13. Microwave data for (A(O)/A(T))’ versus T for an YBazCu30ags crystal [ 691. 

In Fig. 13, we show experimental measurements of the penetration depth by Hardy et al. [69] on a 
YBCO crystal. The low-temperature linear variation of q/n = (A(O)/A(T))* is clearly evident. For 
the pure crystal, the slope 4A/K of &A(T) is close to A(0) ln( 2) /do. 

As previously noted, for a clean system, a linear T dependence for A(T) might also arise if the gap 
is an extended or generalized s-wave with nodes (see Fig. 5(d) ). Thus, to determine the symmetry 
of the gap, it is necessary to have a variety of probes. For example, high-resolution angular resolved 
photoemission can in principle distinguish between a &_),z gap and an extended s*-wave gap of the 
type illustrated in Fig. 5 (d) . 

Now it appears that the linear T dependence of A(T) is only seen in extremely pure systems. In 
fact, much of the early A(T) data failed to exhibit the linear T dependence and was in fact taken 
as providing evidence that the gap was nodeless. However, within the d,~_~2 framework, it is now 
argued that the role of impurities is key. As discussed by Hirschfeld and Goldenfeld [70], a dX~_yz 
system with strong unitary impurity scattering develops a finite density of states N(0) at zero energy 
and below a characteristic energy T” N ( Tdo)‘/* determined by the scattering rate r = n,/vN( 0)) 
with rzi the impurity concentration 

N(w) 2 N(0) + UW*, 

with N(0) - (r/Ao)‘/2iVo. Above 

(25) 

this energy N(o) % (o/dO)NO. In this case 

T* 
A(T) = h(0) + dh + A(0) ln(2);, 

T-f-T* 
(26) 

with dh = 6 (T/do) ‘/2A(0). Thus a ~,z_~,z gap with strong scattering impurities gives a penetration 
depth A(T) which varies as T* below a crossover temperature T* and then returns to a linear 
temperature variation for T > T* provided T* is not so large that one moves out of the linear regime 



D.J. Scalapino/Physics Reports 250 (1995) 329-365 345 

0 

I f 

/ 

ho= 1500A 

-0.00 0.08 0.15 0.22 0.30 

T/T, 

Fig. 14. Penetration depth h(T) versus T for Zn doped YBCO. Here A(T) is normalized to the zero temperature clean 
penetration depth Ae. The theoretical curves [ 1131 are calculated in the unitary scattering limit for the T/T, ratios listed. 
The data [69] for the nominally pure YBCO crystal is shown as circles, for 0.15% Zn doping as diamonds and for 0.31% 

Zn doping as squares. 

of the pure system. Fig. 14 shows the results of fitting A(T) to Eq. (26) for the Zn doped crystals 
of Hardy et al. [ 691 The shift dA used in Fig. 14 is consistent with recent psr measurements [ 711. 

A similar analysis of the Knight shift and nuclear relaxation rate T,-’ in Zn-doped YBCOT also 
provides a consistent interpretation of these measurements [72-741. In particular, impurities lead 
to a zero temperature Knight shift proportional to N(0) N (T/do) ‘i2N0, and as the temperature 
increases, K varies as T2 until it crosses over to a linear T variation above T*. At low temperatures, 
the longitudinal relaxation rate T,-I shows a low-temperature linear Korringa-like behavior with the 
effective density of states N(0) and then crosses over to a T3 variation discussed below. 

To obtain a more complete description of the magnetic properties of the cuprates in the supercon- 
ducting state, it is necessary to take into account the effect of the Coulomb correlations. Thus, for 
example, the spin-susceptibility has been described by an approximate RPA-BCS form [75] 

(27) 

This form was introduced as an approximate way of treating the effect of superconducting correlations 
on the strong antiferromagnetic Coulomb correlations. Here u is an effective interaction and xy is 
the BCS form for the magnetic susceptibility 

I fWg+q) - f(E,) 

w - ( Epfq - E,) + ir 

I- fCEp+q) - f(Ep) 

w + (E,,, + E,) + ir 



346 D.J. ScalapinoIPhysics Reports 250 (1995) 329-365 

-4, 
-1 -0.8 -0.8 -0.4 -0.2 0 

lodT/T.) 
-0 0.2 0.4 0.6 0.8 1 

T/T, 

Fig. 15. (a) Temperature dependence of the nuclear relaxation rate of %u(2) with H along the c-axis normalized to its 
value at T, versus T/T,. Here a d-wave gap amplitude 2Ao/kT, = 8 and a quasi-particle damping r = T,(T/T,)’ have been 
assumed [ 751. The experimental data are from Hammel et al. [77]. (b) Temperature dependence of the 63Cu( 2) anisotropy 
(T;‘),,o/(T;‘)~. The experimental data are from Martindale et al. [78] (squares) and Takigawa et al. [83] (filled and 
empty circles). The solid curve is for a d,2_,,,2-wave gap and the dashed curve is for an s-wave gap (from [ 753 ) . The inset 

shows the q-dependence of the hyperfine form factor IA(q) 1’ versus q for H parallel to the ab plane (solid) and the c-axis 
(dashed). 

I fW,,q) + .I=(&,) - 1 OJ - wp+, (28) 

with E,, the band energy and A,, the gap. Eq. (28) contains the usual energy denominators and 
Fermi factors along with the well-known BCS coherence factors. The hyperfine Mila-Rice coupling 
constants [76], the band parameters and filling along with u can be taken from fits of the normal 
state NMR data. This leaves the form of the gap, the ratio 2A(O)/kT,, and the quasi-particle lifetime 
as parameters which can be used to fit the NMR results for T < T,. The Knight shift results shown as 
the dashed curve in Fig. 3 were obtained using Eqs. (27) and (28) with a d,z-_,,z gap. In Fig. 15(a) 
we compare experimental results [ 771 for the longitudinal spin-lattice relaxation rate of 63Cu( 2) with 
calculated values obtained from 

1 ( > = T~JA&)l2 ImX(qYw) , 
T,, N 0 

4 w: 
(29) 

with w, the Zeeman energy. Here A(q) is the Mila-Rice hyperfine form factor for H parallel to 
the c-axis, x( q, o) is given by Eqs. (27) and (28) with the simple Hubbard bandstructure E,, = 
-2 t(cos pX + cos pY) - ,u, and A,, = do(T) (cos px - cos p?). Note that the Hebel-Slichter peak is 
absent [78-801. Within the dXz_!.z picture, the absence of the Hebel-Slichter peak arises from a 
combination of effects [ 751: (a) the d-wave single-particle density of states has only a logarithmic 
singularity at A0 rather than the square-root singularity for an s-wave gap, (b) the coherence factor 
for quasi-particle scattering (the first term in Eq. (28) ) vanishes for q - (7r, 7r) for a dX~_Y2 gap, and 
(c) the inelastic scattering acts to suppress the peak just as for an s-wave gap. At low temperatures, 
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the linear density of states arising from nodes in the d,z_Jz gap imply tht 7’-’ varies as T3. This 
is consistent with the observed behavior, see Fig. 15(a), but it will be interesting to have lower 
temperature data on clean materials to firmly establish the low-temperature T3 behavior. 

The dl-+p form for Ak was also found to provide a possible explanation for the temperature 
dependence of the 63Cu(2) anisotropy (T,-‘),,/(T;‘), associated with having H in the ab plane and 
along the c-axis, respectively [ 751. The q-dependence of the hyperfine form factors for 63Cu with 
the external magnetic field H in ‘he ab plane or along the c-axis are quite different. This difference 
is reflected in the temperature dependence of the ratio (T’-‘)oh to (Tl-‘)c. As seen from the inset 
in Fig. 15(b), the form factor is such that the nuclear relaxation rate for 63Cu when H is in the 
ab plane has a larger contribution from the (v, r) spin fluctuations than (T’-‘)c for H parallel to 
the c-axis. In the normal state (T,-‘),,,/( Tl-‘)c is found to increase with decreasing temperature due 
to the growth of antiferromagnetic fluctuations [ 81,821. In the superconducting state, the observed 
anisotropy ratio (T,-‘),,,,/(T’-‘), initially decreases as T drops below T, but then increases at lower 
reduced temperatures [ 78,83-851 as shown in Fig. 15(b). The dashed curve shows the calculated 
anisotropy ratio obtained for an s-wave gap using Eqs. (27) and (28) in Eq. (29) along with the 
appropriate hyperfine form factors. While an s-wave gap gives the initial decrease of the anisotropy 
ratio associated with the opening of the gap, it is unable to account for the subsequent increase in the 
anisotropy ratio at lower reduced temperatures. The solid curve in Fig. 15(b) is the corresponding 
result for a dx2_?,? gap [ 751. Here again ( Tl-‘)c,b/( T,-' )= initially decreases as the gap opens, However, 
at lower reduced temperatures the spin fluctuation spectral weight ImX( q, o)/wJw, decreases faster 
for small values of q than for large values of q near (z-, r) due to the nodes in the d,z_yz gap. This 
causes the anisotropy ratio to increase, as shown in Fig. 15(b). It is important to note that in this 
calculation the parameter ?? in the RPA form for x, Eq. (27), as well as the hyperfine form factors 
Arrh(q) and A,(q) were kept the same as in the earlier work for the normal state. Only the form of 
the gap, d,z_,+ or s-wave, the ratio 2 A(O)/kT, = 8 and the quasi-particle lifetime r-’ - T,(T/T,)” 

were chosen. 
Thelen et al. [86] have extended this approach by including a next nearest neighbor hopping t’ 

and a q dependent effective exchange v in Eq. (27). In this case, proper account of the YBCO 
Fermi surface is taken into account along with x(q) and a quantitative fit to both the 63Cu and “0 
NMR relaxation rates for T < T, are obtained. The interrelationship of the band structure and the spin 
dynamics in the cuprates has also been emphasized by Si et al. [ 511, and they have also carried out 
detailed calculations of the NMR relaxation times as well as the neutron-scattering response. 

The transverse nuclear relaxation rate T;d was calculated using the same RPA-BCS form for x. 
In this case, it is the real part of x which enters and one has 

I 
K = c lA(q)14x2(q) - c 14d12x(d 

Cl 4 

(30) 

In Fig. 16, the results of this calculation [87] are compared with measurements on YBa2Cu408 by 
Itoh et al. [85]. The over-all scale of the theoretical calculation is set by the value chosen for the 
bandwidth. The calculation was done prior to the experiment and, as can be seen, the d+!z-wave 
result is in good agreement with the measurement, although it is important to keep in mind that this is 
a technically difficult experiment because of the large r.f. field modulation required to sweep through 
the resonance line and avoid effects due to temperature-dependent changes in the linewidth. The large 
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Fig. 16. The nuclear transverse relaxation rate for ““Cu(2) versus temperature for YB2Cu40s [72]. The curve D is the 
d,z_+-wave prediction and the curve labeled S is the s-wave predictions [87]. The over-all scale is set by the assumed 
value for the bandwidth. 

decrease in T2;’ below T, for an s-wave gap arises from the suppression of the antiferromagnetic 
correlations by the superconducting gap. For a dX~_Y~ gap, this suppression is significantly reduced 
due to the nodes and the existence of electronic states in the gap below do where N(w) varies as o, 

Eq. (22). 
There are in addition a variety of other transport measurements such as Raman scattering and 

inelastic neutron scattering which clearly show the existence of states in the gap. Devereaux et 
al. [88] have argued that the symmetry dependence of the Raman scattering in BSCCO implies 
that the gap has predominantly dX?-_? 2 character. However, Krantz and Cardona [ 891 disagree with 
this interpretation of the data and furthermore stress the difficulty of using Raman spectroscopy to 
distinguish between a d,z_? z and a strongly anisotropic s-wave gap. Likewise, while the neutron 
scattering data of Mason et al. [90] clearly shows the presence of states in the gap, they note that 
the isotropic reduction of the peaks is inconsistent with the behavior of Im xy (q, w) calculated 
from Eq. (28) with a dx2_!2 gap. They propose that their data be interpreted in terms of a dirty 
s-wave gap. We [ 91 J and others [ 921 have shown that when spin-fluctuation enhancement, Eq. (27)) 
and impurity scattering are taken into account, a d,z_!z gap can provide a possible fit to the data. 
However, the absence of line width narrowing below T, disagrees with present calculations unless a 
large amount of impurity scattering is included. 

Angular resolved photoemission spectroscopy (ARPES) studies [93] provide information on the 
magnitude of the gap j&l on different parts of the Fermi surface. Fig. 17 shows measurements of 
Shen et al. [ 941 on a Bi 2212 crystal. There is a clear shift of spectral weight as the gap opens for a 
momentum kA while the shift for kB is negligible. These experiments probe the magnitude of the gap 
and hence cannot distinguish between a highly anisotropic s-wave and a d,z_g gap. However, the 
experimentalists conclude that their results are consistent with a dXz_yz gap. It will be interesting to 
determine the effect of impurities on the ARPES. In such experiments it will be important to know 
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Fig. 17. ARPES data [94] above and below T, 2: 79 K recorded at two Fermi surface wave vectors ICA and k~ marked in 
the inset. In the superconducting state the leading edge of the spectral weight shifts for /CA, indicating a gap. The absence 
of an observable shift at ke implies a large gap anisotropy consistent with a d,z_yz gap. 

that the impurities act on quasi-particles in the Cu02 plane and not simply as surface contaminants 
which scatter the emitted electrons. 

It is also possible to devise measurements which look at the relative phase of the gap between 
different points on the Fermi surface. Wollman et al. [ 9.51 have studied the magnetic flux modulation 
of dc SQUIDS in which YBCO-Au-Pb Josephson weak links fabricated on the orthogonal a and b 
faces of a YBCO single crystal are connected by a Pb film. These pioneering experiments are difficult 
because of SQUID asymmetries, the need to extrapolate to zero SQUID current, and the possibility 
of trapped flux. In addition Klemm [ 961 has pointed out the problem that a comer geometry presents 
with respect to flux penetration. Nevertheless, Wollman et al. [95] conclude that taken as a whole 
these experiments provide evidence for a 7~ phase shift between pairs tunneling in the a and b 
directions. In addition, these authors have also reported results for the magnetic flux dependence of 
the critical current of a single Josephson junction formed on the comer of a YBCO crystal. In this 
case, for a junction whose dimensions are small compared to the Josephson penetration depth so that 
self-fields can be neglected, the critical-current-flux relation is 

I,(@) = 2Zosin2(?r~/2~o)/(~~/~O) (31) 

rather than the usual Fraunhofer form Z, (@) = 2Z0( sin &/@,) /( &/Go). These ideal characteristics 
are shown as the solid (d-wave) and dashed (s-wave) curves in Fig. 18. Recent experimental results 
for a comer junction are shown in the lower part of Fig. 18. It would be useful to have a magnetic 
field scan to determine whether peculiar trapped flux configurations or inhomogeneous current flows 
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Fig. 18. The upper part of this figure shows the predicted current versus flux characteristics for a YBCO-Pb comer 
Josephson junction with YBCO assumed to have an s-wave (dashed) or a d,2_y2-wave (solid) gap. The lower curve shows 

the experimental measurement of one such junction (from [ 951). 

are present. In addition, it would be interesting to compare these experiments with similar experiments 
on conventional low-temperature superconductors [ 97 1. 

Recently Tsuei et al. [98] have reported studies of flux quantization in superconducting YBa2Cus- 
O7_6 rings with 0-, 2-, and 3-grain boundary Josephson junctions. The geometry of the rings in this 
experiment is shown in Fig. 19. The rings studied in this work were fabricated from epitaxial films of 
YBCO deposited on a tri-crystal SrTi03 substrate. The YBCO film grows with its a-b axes oriented 
along the ( 100) and (010) axes of the SrTi03 substrate forming grain boundary Josephson junctions 
along the boundaries set by the tri-crystal geometry illustrated in Fig. 19. Then the rings are patterned 
such that one ring has no-grain boundaries, two rings have two-grain boundaries, and the ring in the 
center has three-grain boundaries. The orientations of the grain boundaries in the three-grain boundary 
junction are such that in the absence of any flux, one of the Josephson grain boundary junctions is 
frustrated, that is the phases associated with pair transport perpendicular to the interface have the 
opposite signs. We have schematically illustrated this in the figure. The point is that the Fermi surface 
is locked to the lattice, the phase of the pair field modulo an over-all phase factor eirp is locked to 
the Fermi surface, and it is assumed that the pair field coupling across a grain boundary is mediated 
by electrons traveling perpendicularly to the interface, Now suppose the inductance of the ring L 
multiplied by the junction critical current I, is large compared to a flux unit hc/2 e. In this case, it 
requires very little magnetic energy to create half of a flux unit in the ring which can then provide 
a 7~ phase shift to heal the frustrated grain boundary junction and recover the Josephson junction 
energy. Thus, as discussed by Sigrist and Rice [ 991, such a ring in the absence of an external field 
will have a spontaneous magnetization corresponding to half of the usual superconducting flux unit 
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Fig. 19. Schematic diagram showing the grain boundaries of a tri-crystal (100) SrTiOs substrate and the YBa2Cus07_8 
epitaxial rings. One ring contains no grain boundary weak links, two contain two, and the ring in the center contains three 
grain boundary weak links. The d_+y2 orbitals are oriented along the a-b axes of the YBCO films and illustrate how the 
three grain boundary ring is frustrated (from [98] ). 

_- 
I 

et- 
.-- - -- -- 

i ----- ----+!I 
-4‘ ~----- - -- 

0 
L 

1 2 3 4 5 6 7 8 
Run number 

0 3-junction ring Cl Z-junction rings 

Fig. 20. A scanning SQUID microscope is used to measure the flux through the rings. The open squares near multiples 
of hc/Ze correspond to the trapped flux measured in the 0- and Z-junction rings. The solid points near (n + i)(hc/2e) 
correspond to the observed flux in the 3-junction ring (from [98] ). 

hc/2 e. 
Using a scanning SQUID microscope, Tsuei et al. measured the magnetic flux trapped in the rings 

when they were cooled from above T, to 4.2 K in a nearly vanishing external magnetic field. They 
observed the results shown in Fig. 20. In all cases the two-junction control rings were found to have 
the same number of flux quanta threading them. The difference between the 2-junction and O-junction 
rings was always near to an integer value of Q0 = hc/2 e, while the difference between the 3-junction 
ring was always close to (n + i)@,. as shown in Fig. 20. 
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Fig. 21. (a) A schematic representation showing the orientation of the hexagonal superconducting grain S’ relative to the 
rest of the film S. (b) Current-voltage characteristics of a full hexagon and with successive faces removed (from [ 1031). 

There is of course an alternate explanation of this observation in which magnetic spin-flip scattering 

at a grain boundary induces a rr phase shift [ 100,101 1. This was in fact suggested as a possible 
explanation of the paramagnetic Meissner (Wohlleben) effect [ 1021. However, both the Wohlleben 
effect and the half-flux quantum spontaneous magnetization of the three-grain boundary find a natural 
explanation within the dx2_+ picture. 

There are, however, other grain boundary and Josephson tunnel junction experiments which raise 
questions regarding the d,z_).? picture. Chaudhari and Lin [ 1031 have reported critical current mea- 
surements between two superconducting grains S’ and S, schematically illustrated in Fig. 21 (a). If 
the gap has d,z_! 2 symmetry and the pair phase is constant in each region, the Josephson critical 
current across a given face of the S’ hexagon has been argued [99] to vary as 

1, = I, cos2(cy - p;> coszp;. (32) 

Here I, is a constant, LY = 45”, and pi depends upon the orientation of the grain boundary face as 
shown in Fig. 21. In the experiment current flows from a contact on the hexagon S’ to the outside 
superconductor S. If the gap has dX2_y symmetry, the magnitude and direction of current flow changes 
for the different faces according to Eq. (32). Interference between the currents flowing across the 
different faces implies that if the pair phase is constant in each grain, the sum of the critical currents 
over all six faces will in fact vanish. In this case, if one of the faces is removed by laser ablation, 
then the interference will be incomplete and a non-vanishing critical current will be observed. In 
the experiment a finite critical current was observed, Fig. 21 (b), which was directly proportional to 
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the number of faces present. No interference effects were observed, and it was concluded that these 
results were consistent with a gap having s-wave symmetry. 

However, as discussed by Millis [ 1041, the pair phase need not be constant within each grain. In 
fact, spontaneous currents will flow such that the free energy is minimized (just as in the case of the 
three-grain boundary ring discussed above). Thus, it is possible that spontaneous supercurrents flow, 
creating both magnetic field and kinetic inductance phase shifts 

that give rise to the critical currents which are observed. However, even allowing for this, the 
observation of a finite critical current across a 45” grain boundary interface is difficult to understand 
within the d,z_?.z framework. Like the comer Josephson junction in zero applied field discussed above, 
a 45” grain boundary would not appear capable of supporting a finite critical current. 

One could also envision testing the symmetry of the high-T, cuprate superconducting order param- 
eter by studying the Josephson tunneling between a conventional s-wave superconductor and a c-axis 
oriented cuprate superconductor. Sun et al. [ 1051 have in fact observed Josephson tunneling currents 
in Pb/insu1ator/Y1-xPrxBaCu307_s c-axis oriented tunnel junctions. The value of the Josephson 
current was typically a factor of order 10 smaller than the Ambegaokar-Baratoff [ 1061 value. Nev- 
ertheless, it is difficult to understand how there can be a finite critical current along the c-axis if 
YBCO is a superconductor with dx+ 2 symmetry. One might argue that YBCO is orthorhombic and 
not tetragonal, so that the in-plane distortion could admix some s-wave component. However, the 
experiments have been done on highly twinned crystals, and the critical current is proportional to the 
area of the junction rather than the square root of the area. Whether currents flowing in the ab plane 
at steps or etch pits can provide an explanation consistent with a dxz-yz gap remains uncertain. 

To summarize this discussion as to how we would know if the gap has d,2_,2 symmetry: 
- 1. Power law behavior of the low-temperature transport properties such as the penetration depth, 

the Knight shift, and the nuclear relaxation rate T,-’ are consistent with a dxz_yz gap. Furthermore, 
the behavior of these quantities with impurities can be understood within the framework of a dirty 
dX?._?.2-wave model. Raman scattering and inelastic neutron scattering can also be described within 
this phenomenology. 

- 2. ARPES measurements find evidence for a highly anisotropic gap, consistent with a d,z_g2 gap. 
- 3. SQUID interference experiments, comer Josephson junction studies, and flux quantization mea- 

surements in grain boundary rings can be interpreted in terms of a d,z_,z gap. 
However, there are other experiments which raise questions regarding the existence of a d,2_,2 gap, 
such as the Chaudhari-Lin experiment [ 1031 on interfacial tunneling and the Sun et al. [ 1051 c-axis 
Pb-YBCO Josephson current work. In addition, the temperature dependence of both the penetration 
depth and surface resistance of the “electron-doped” cuprate Nd2_,Ce,Cu04 appear to follow the BCS 
s-wave expressions [ 1071. Beyond this, the relationship of the residual resistance to the observed 
shift in T, for Yi_,PrXCu30, and irradiated YBCO samples raise questions as to whether a dx+z gap 
is possible [ 1081. Is this a lifetime or carrier density problem? Finally, the isotope effect [ 1091 also 
poses an important challenge to our understanding of these materials. 
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4. Conclusions 

At the past March ( 1994) APS meeting, Barbara Levi asked Bertram Batlogg “When do you think 
we’ll have a definitive experiment on the symmetry of the gap?’ Batlogg answered, “We already 
have. It’s just that we don’t all agree on which experiment it is.” Further experiments will help clarify 
this. In particular, different experiments on the same samples can provide important constraints on the 
theoretical interpretations. For example, in recent specific heat measurements [ 1 lo] of YBa2Cu306.95 
crystals in the presence of a c-axis magnetic field H, the coefficient of the linear term in the 
specific heat was observed to vary as H’f2 (see Fig. 22). This behavior was predicted by Volovik 
[ 1111 for a gap with nodes. He showed that the quasi-particle spectrum is shifted by the superfluid 
velocity around a vortex core resulting in an effective quasi-particle density of states proportional to 

(H/H& . ‘I2 The fact that these crystals were grown by the same technique [ 1121 as those which 
showed a linear temperature dependence of the penetration depth [69] provides the possibility of 
comparing predictions for a given model. In this case the magnitudes of the effects are consistent 
with a d,z_?,z gap. Another example is the measurement of the real and imaginary parts of the surface 
impedance of YBCO crystals. This provides data on the real part of the conductivity [57] g1 and the 
penetration depth [ 691 h. Calculations [ 1131 of (T have been carried out using a dirty-d,z_!.z-wave 
model. When the gap A0 and scattering rate l? are adjusted to fit the penetration depth data, one can 
check to see how well the theory fits the al data. What is found is that while some features of the 
experimental crI data are reproduced, the present theory predicts that at low temperatures crl has a 
T2 temperature dependence while the experiment appears to exhibit a linear T variation. Thus further 
work is needed. Perhaps NMR as well as ARPES studies for these same crystals could also be carried 
out. It will also be important to determine if other cuprates exhibit (12 + i) (hc/2 e) flux trapping 
in the three-grain boundary ring experiment. In particular, what about the “electron doped” cuprate 
Nd2_,Ce,Cu04 which appears to have a BCS s-wave temperature dependence for A and the surface 
resistance. [ 1071 

On the theory side, there also remain a number of issues. At the phenomenological level, calcula- 

0 2 4 6 8 10 
H (Tesla) 

Fig. 22. The coefficient of the field-dependent linear temperature contribution to the specific heat yl (H) versus H for a 
single crystal of YBa~Cu~O~.~s. The solid line is a fit to yl(H) = AH’j2 with A = 0.91 mJ/mol-K2-T’/2 as predicted for 
lines of nodes. The inset shows a schematic density of states. From Ref. [ 1 lo]. 
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tions of a range of properties can provide more stringent tests of the theory. In addition, experimental 
input such as the recent neutron scattering results [ 114-l 16,901 for La2_,Sr,Cu04 provide a basis 
for testing theoretical ideas. For example, such data [ 1141 have been used to determine the NMR 
relaxation [ 1171 times for Cu and 0. The analysis in fact suggests that there are difficulties in under- 
standing the 0 relaxation within the usual one-component framework. It should also be possible with 
the availability of higher energy neutron scattering data [ 1181 to determine whether there is sufficient 
coupling strength in the spin-fluctuation spectrum [ 1191 to offer the possibility for producing the 
observed T,. Here of course the absence of a Migdal theorem limits this type of analysis, but it can 
nevertheless offer useful qualitative information. 

Finally, there remains the nagging feeling that even if the basic pairing mechanism ultimately arises 
from the short-range antiferromagnetic correlations in a Cu02 layer, some important ingredient may 
be missing from the theory we have described. For example, perhaps frustration [ 1201 of the Cu-Cu 
exchange coupling which can occur when a hole is on the 0 site between the Cu’s plays a critical role. 
Is this frustration responsible for the spin-gap behavior [ 1211 observed in some cuprates? Could it be 
important for a system to “almost” exhibit a spin gap in order to have a high transition temperature 
[ 122,123]? Within the antiferromagnetic spin-fluctuation exchange theory we have discussed, one 
finds that if the spin fluctuation spectral weight at energies less than 2& could simply be moved 
to energies greater than 2&, without altering its strength, T, would be enhanced [ 1241 4. Presently 
work on the doped two-chain Hubbard model [ 1261, which exhibits a spin gap, offers the possibility 
of numerically exploring the pair-field correlations in a system which has a spin gap. There are of 
course many other theoretical suggestions regarding the essential ingredients, so that just as in the 
case of the experimental studies, there is at present no consensus, and the case for spin-fluctuation 
mediated ~,z__,,z pairing in the cuprates remains open. 
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Appendix A 

Prior to the discovery of the high-temperature superconductors, the Hubbard model was being 
studied in connection with various organic as well as heavy-fermion materials. The possibility that 
spin-density wave fluctuations in weakly coupled chains could lead to pairing was raised in connection 
with the observation of superconductivity in the Bechgaard salts [ 1671. Numerical simulations of 
the Hubbard model suggested that there could be an attractive near-neighbor pairing interaction 
[ 1271. Motivated by the discovery of superconductivity in UBe,j and UPt3 [ 1281, phenomenological 
[ 1291 and diagrammatic RPA calculations [ 1301 found that near an antiferromagnetic instability the 
exchange of spin-fluctuations could lead to dXz_!,z pairing. 

Following the discovery of the cuprate superconductors, the possibility of antiferromagnetic para- 
magnon mediated pairing was discussed for a nearly half-filled 2D Hubbard model [ 131,132]. Using 
an RPA approximation for the effective electron-electron interaction, Eq. ( 12)) the Eliashberg dXz_?,z 
coupling strength 5 

h+ _ ,,z = 

bd,2_,.2 W)WP’ - P? w = O)gd,*_,2 (PI) 
kia2_v2 (P 1). 

9 (A-1) 

with gd,z_,z (p) = (cosp, - cosp!) was studied as a function of U and the band filling. The averages 
were taken over the Fermi surface of the 2D system with E,) = -2 t(cos pX + cosp,) - p. A similar 
calculation of the wave function renormalization factor A, was also carried out giving an effective 
coupling h+ _,.* / ( 1 + AZ ) . Comb ined with the average interaction frequency (o), the resulting estimate 
for the transition temperature was encouraging. However, the linear T dependence predicted for the 
low-temperature penetration depth of a dXz_j 2 superconductor appeared to be in disagreement with 
early psr [ 1331 and magnetization measurements [ 1341. 

In the large U limit, a canonical transformation of the Hubbard model in which terms of order 
t2/U are kept, leads to the t-J model 

EZ = m-t C ( c!~c,;~ + c,!~~c;<~) + J C( si . Sj - $tIinj) 
G.i)P (4 

- tJ C (C~+,,,C:-,Ci,-rrCi+r’,a + C~+,,-,CZrrCi,-crCi+r’,~) * (A.21 
i,rjr’,ff 

Here the exchange interaction J = 4 t2/U and it is understood that g acts in a Hilbert space where 
double occupancy of a site is forbidden. The third term is a three-site hopping interaction which is 
proportional to J times the hole density per site x and is often neglected near half-filling. Gros et 
al.[ 1351 used a Gutzwiller-BCS variational wavefunction I@) to study the ground state of the t-J 
model with 

5 It might be thought that this calculation neglects retardation because it involves an average over the Fermi surface 
of V&(p’ - p, o = 0). However, the point is that &” (do/?r)2ImV,s(p’ - p, w)/ o = &(p’ - p, o = 0), so that the 
frequency dependence of the interaction is included in the same manner as the familiar electron-phonon problem in which 
A = s,” do2cY2F( o) /o. Th’ IS of course only gives a measure of the strength of the interaction and to determine TC within the 
Eliashberg framework it is necessary to keep the full momentum and frequency dependence of the interaction as discussed 
in [ 148,461. 
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I@) = l-I (1 - niTnil) JJ@k + ~k+t,JO). 
i k 

The first term projects out all doubly occupied sites of the BCS-like state. Taking 

(A-3) 

uk 
-= 

uk ck+;&$ 
(A.41 

with &k = -2 t(cos k, + cos k!) - ,u, they calculated the groundstate energy (@]a(@) for various 
choices of Ak. For the nearly half-filled band, they found that the d,2_g~ gap, Ak = A0 (cos k, - cos ky ) 

gave the lowest variational energy. A similar conclusion, that hole doping of the t-J model leads to a 

&_!,2 ground state, was found in auxiliary-boson mean-field treatments [ 136,137]. At larger dopings 
x > 0.1, Li et al. [ 1381, keeping the three-site interaction, found that the mixed s’ + i&z_?,2 state gave 
the lowest variational ground state energy. 

Phenomenological arguments based upon the notion that the superexchange interaction along with 
possible second- and third-neighbor phonon interactions could give rise to d,z_,z pairing were also 
proposed [ 1391. Recently it has been suggested [ 1401 that this superexchange interaction is related to 
the exchange of spin-fluctuations and arises from the virtual exchange of high-energy spin excitations 
across the lower and upper Hubbard bands. Dzyaloshinskii [ 1411 and Schulz [ 1421 independently 
carried out weak-coupling renormalization group calculations for the two-dimensional Hubbard model 
which took into account the effect of the Van Hove singularity and led to dx2_y pairing. Dzyaloshinskii 
and Yakovenko [ 1431 found that for a more general interaction the renormalization group equations 
could lead to various instabilities including single superconducting dxz_!,z pairing, along with possible 
coherent mixtures of CDW and SDW phases. Ruvalds [ 1441 and co-workers also found that d+).z 
pairing was favored for nested Fermi surfaces consisting of nearly parallel orbit segments. 

In the spin bag picture proposed by Schrieffer, Wen, and Zhang [ 1451, an added hole locally 
weakens the antiferromagnetic correlations, creating a region which can be shared by another hole. 
This approach leads to s or dx?--!12 pairing, depending upon whether the dominant momentum transfers 
are small or large. They also suggested the possibility that nodeless d-wave pairing could occur if 
the Fermi surface consisted of separate regions near the X-Y points of the Brillouin zone. Kampf 
and Schrieffer [ 1461 showed how the spin-bag mechanism could arise from cross-line diagrams in 
the paramagnetic metallic phase of the doped Hubbard model. Frenkel and Hanke [ 1471 discussed 
the role of transverse spin-fluctuations and their contribution to pairing in the spin-bag model. 

In order to go beyond the earlier calculations of the Eliashberg coupling parameters, Bickers et al. 
[ 148,149] carried out a conserving, self-consistent, fluctuation exchange approximation calculation 
for a two-dimensional Hubbard model. In this approach, the propagators are generated from a free- 
energy functional consisting of particle-particle ladder and particle-hole ladder and bubble skeleton 
graphs. The single-particle Green’s function which enters these graphs is fully dressed and all the 
momentum and Matsubara frequency dependencies are kept. One merit of this approach is that relevant 
Ward identities are satisfied so that conservation laws for particle number, momentum and energy are 
automatically satisfied. In addition the influence of self-energy effects on the particle-particle pairing 
instability as well as on the spin-fluctuations which drive it are included. This approach does neglect 
vertex corrections and the cross-line diagrams of the spin-bag model. Calculations of these corrections 
[ 150,15 1 ] suggest that they are small for weak-to-moderate coupling. In addition, the results obtained 
from the conserving approximation were shown to be in reasonable agreement with available Monte 
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Fig. 23. Phase diagram for a doped two-dimensional Hubbard model with U/t = 4 calculated within a conserving, fluctuation 
exchange approximation. 

Carlo data at higher temperatures [ 148,149]. As seen in Fig. 23, the conserving approximation 
calculations showed that when the two-dimensional Hubbard model was doped beyond a critical 
doping, the leading instability changed from the SDW channel to the &~._~2 pairing channel. For 
U = 4t and a doping of x = 0.15, a superconducting transition temperature of order O.O2t, which for a 
bandwidth 8 t = 2 eV corresponds to 60 K, was obtained. Recently, this approach has been extended to 
treat the superconducting state [ 39,401 at temperatures below T,. The simple (cosp, - cosp?,) form 
was found to provide an excellent fit of the angular dependence of the dressed gap d(p, i?rT) on the 
Fermi surface. In addition, the maximum value of the gap antinode at low temperatures do(O) was 
found to give a 2 A,(O)/kT, value of order 8 to 10. These calculations also showed the importance 
of nonlinear feedback effects, which arise in the conserving approximation, in stabilizing the strength 
of the spin-fluctuation pairing interaction below T,. 

Within a phenomenological framework, antiferromagnetic spin fluctuations provide an approach for 
interpreting the unusual normal state NMR relaxation rates [ 47-5 1 ] and the electrical conductivity of 
the cuprates [ 152,461. Using an RPA-like parameterization [49] of the spin susceptibility which fit 
the NMR data and a coupling strength consistent with the observed resistivity, Monthoux and Pines 
[46,153] carried out an Eliashberg-like calculation and obtained a transition temperature consistent 
with that observed in the high-T, cuprates. In these calculations, just as in the conserving approxi- 
mation, the full momentum and Matsubara frequency dependencies of the interaction were taken into 
account. Similar calculations leading to high T, values using a self-consistent renormalization theory 
of spin-fluctuations were carried out by Moriya [ 152,154] and co-workers. Radtke et al.[ 1191 have 
also solved the Eliashberg equations with an interaction in which x was parameterized to fit the 
available neutron scattering data but found T, values of only 10 to 20 K. 

In addition to these diagrammatic and phenomenological approaches, there has been a variety 
of numerical calculations aimed at obtaining exact results. For example, Lanczos diagonalization 
calculations for small clusters have been carried out for both the t-J model [ 155,44,156,157] and the 
Hubbard model [ 651. In the former, diagonalization of clusters with up to 26 sites shows that a critical 
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threshold value of J/t exists above which the two holes are bound. That is, the energy of two 26-site 
clusters in which two holes are added to one of the clusters is lower than if one hole is added to each 
cluster. This critical value of J/t is estimated to be of order 0.3. The state of the undoped 26-site 
system has s-wave symmetry, while the 2-hole ground state has dX~_y~ symmetry. These results are 
in agreement with Green’s function Monte Carlo simulations [ 1581 on larger lattices which estimate 
that two holes will bind on an infinite lattice if J/t 2 0.27. However, the binding energy on the infinite 
lattice is significantly reduced (0.1 t for J/t = 0.4) from that found on a 4 x 4(0.349 t) lattice. While 
it has been suggested that phase separation [43] will take place for any finite value of J/t, this is in 
disagreement with the interpretation of results obtained from exact diagonalization studies [ 1591 and 
high-temperature expansions [ 1601 which conclude that phase separation does not occur for J/t < 1. 

Exact diagonalization studies of the Hubbard model on 4 x 4 lattices [65] find that for U/t > 3, 
two holes added to the half-filled cluster are bound (i.e. Eo( 14) - Eo( 16) - 2E0( 15) < 0). The 
symmetry of the two-hole ground state is dX?--!l~ relative to the ground state of the half-filled system. 
However, whether the binding energy remains finite or vanishes as the lattice size increases is not 
known. It is however found that two holes added to a two-chain Hubbard model bind in a d,z_~,z-like 

state [ 1261. 
Monte Carlo simulations have provided insight into the physical properties of the two-dimensional 

Hubbard model [ 161,162]. A number of normal state properties ranging from the long-range antifer- 
romagnetic order of the half-filled ground state to the 11 - (n)] variation of the Drude weight of the 
doped system are consistent with experimental observations on the cuprates. In addition, Monte Carlo 
calculations have shown that the particle-particle interaction in the d,2_!.2 channel is attractive near 
half-filling [ 163,164]. However, finite-temperature Monte Carlo [62] simulations on 8 x 8 lattices 
with U/t = 4 and T = t/6 as well as “zero temperature” projector Monte Carlo calculations on 12 x 12 
lattices [61] find that the equal time d,z_! 2 and extended s-wave pair field correlation functions re- 
main very short range even when the lattice is doped near half-filling. In addition, calculations of 
the Drude weight and the superfluid density find that while the Drude weight of the doped Hubbard 
model is finite, implying that it is metallic, no superfluid density was observed at the temperatures 
(T = 0.25 t) and lattice sizes (12 x 12) that could be reached [ 63,641. 

Recent density matrix numerical renormalization calculations of the ground state of the two-chain 
Hubbard model find power law dX?_!.?-like pair-field correlations which, as shown in Fig. 24, are 
enhanced by an on-site Coulomb interaction [ 1261. This could mean that previous Monte Carlo 
simulations for the doped two-dimensional Hubbard model simply failed to reach sufficiently low 
temperatures to see the development of long-range pair-field correlations. However, it could also 
mean that the spin gap, which occurs in a two-chain Hubbard model, is an essential ingredient. Just 
as in the case of the experimental studies of the cuprates, further theoretical work is needed. 

Appendix B 

This paper originated from several Colloquia which I gave during the spring quarter of 1994. 
The idea was to discuss why the superconducting state of the cuprates might have d,z_g symmetry 
and how this could be tested experimentally. Some background regarding what is meant by dXz_g 
symmetry follows. 

Shortly after Bednorz and Muller’s discovery [ l] of superconductivity in La2_,BaXCu04, Shapiro 
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Fig. 24. The equal-time rung-rung singlet pair-field correlation function (Aid;) for a 2 x 32 Hubbard Iadder versus Ii - jj. 
Here AT creates a single pair across the rung of a two-chain Hubbard ladder doped so that (n) = 0.875. The ladder 
is characterized a one-electron hopping t along each chain and a hopping tl = 1.5 t across the rungs connecting the 
chains. This ground state calculation represents, to our knowledge, the first numerical evidence that the range of pair-field 
correlations can be enhanced in a Hubbard model by the presence of (I (U = 8 solid circles and U = 0 open circles). From 

R. Noack et al., Ref. [ 1261 

step [67] and flux quantization 168 J measurements confirmed that the superconducting phase was 
indeed the usual BCS 2e charged pair condensate. In addition, Knight shift measurements [ 16,171 
showed a vanishing spin susceptibility so the pairs were determined to be in a singlet state. Thus we 
know that the condensate can be described by the pair wave function [ 1651 

(B.1) 

Here $,Y, (x, ) destroys an electron of spin sI at position xl, and the expectation value is taken between 
the ground states of N and N - 2 particles. The center of mass pair phase of the second term on the 
right-hand side of in Eq. (B.l) describes the usual superfluid properties, while the relative coordinate 
wave function cp(x, - x2) describes the orbital symmetry of the pairs6. In a rotationally symmetric 
system, p can be expanded in spherical harmonics, and for a singlet state one would speak of s, d, . . . 

orbital symmetry. In a planar lattice with D 4h symmetry one has the five even parity representations 
listed in Table 1, Now, one can express cp(x, - x2) in k-space so that 

cp(Xl - x2) = c (&&+x1--x2). U3.2) 

Then using the simplest basis functions of a given representation, we speak of a Cooper pair with 

’ In general the fermion field operators $,I (x) can also depend on the time leading to a p which depends upon tl - t2. 
This is reflected in the frequency dependence of the gap. 
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extended s-wave symmetry if & N (cos k, + cos k,) or d,2_?,2-wave symmetry if (pk N (cos k, - 
cos k?). 

Physically, in a superconductor, the quasi-particles interact with the pair condensate so that the gap 
Ak in the quasi-particle spectrum is related to pk. The BCS theory [ 1661 tells us that 

(Pk = Ak/Ekr (B.3) 

with Ek = 
J 

.$ + A:, and f.tk given by 

c Vkk’ Ak’ 
Ak=- - 

k, 2Ekt ’ 
(B.4) 

This can be rewritten, using Eq. (B.3), as a wave equation for pk, 

2&&Q + c &$&’ = 0. (B-5) 
k’ 

Here the eigenvalue is zero, corresponding to placing the pairs at the chemical potential. 
Thus we see that the symmetry of pk reflects the symmetry of the interaction. Furthermore, when 

one speaks of the gap Ak as having d+) z symmetry, one is also saying that the relative coordinate 
wave function of the pairs (Pk has d,z_yz symmetry. 
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Note added in proof 

The introduction should have noted that PH. Dickinson and S. Doniach, Phys. Rev. B 47 (1993) 
11447, have used a large-h’ expansion to study a three-band model and find a gap characterized by 
d-wave pairing of Cu-Cu holes and Cu-0 holes with a relative phase of r/2 between the Cu-Cu 
and Cu-0 pairs. They have called this d + idp pairing. Likewise, our discussion of vertex corrections 
should contain a reference to A.J. Millis, Phys. Rev. B 45 ( 1992) 13047. In this paper he discusses 
vertex corrections and the Migdal theorem for a nearly antiferromagnetic Fermi liquid. Relevant to the 
discussion of neutron scattering, T.R. Thurston et al. [ 1153 have argued that their neutron scattering 
data on Lai,ssSro.&u04 excludes a conventional s-wave gap but could be compatible with a d,z_y- 
wave description. Also important for the discussion of the spin fluctuation spectral weight and T,, 
M. Matsuda et al., Phys. Rev. B 49 ( 1994) 6958, have found that at intermediate energies the spin 
fluctuation strength of La 1.85Sr0.15CuO~ is a factor of 3 larger than that in La1.98Sr0.02Cu04. Finally, 
we note two recent preprints on the relative phase of the gap. J.R. Kirtly et al. have recently carried 
out further studies of flux quantization in specially oriented tricrystal YBa2Cu307-S rings with rule 
out the spin-flip scattering mechanism and support the idea that the l/2-integer flux quantization is 
associated with the symmetry of the order parameter. A. Mathai et al. have used a SQUID microscope 
and a time-reversal test to study YBCO-Pb films in a similar geometry to that of Wollman et al. 
[ 951. They have concluded that the pairing symmetry has a dxz_y? component and is invariant under 
time reversal. 


